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ABSTRACT 

We compare several alternative approaches to computing 

correlation functions, which is a cosmological application for 

analyzing the distribution of matter in the universe. This 

computation involves counting the pairs of galaxies within a given 

distance from each other and building a histogram that shows the 

dependency of the number of pairs on the distance. 

The straightforward algorithm for counting the exact number of 

pairs has the O(n2) time complexity, which is unacceptably slow 

for most astronomical and cosmological datasets, which include 

billions of objects. We analyze the performance of several 

alternative algorithms, including the exact computation with an 

O(n5/3) average running time, an approximate computation with 

linear running time, and another approximate algorithm with sub-

linear running time, based on sampling the given dataset and 

computing the correlation functions for the samples. We compare 

the accuracy of the described algorithms and analyze the tradeoff 

between their accuracy and running time. We also propose a novel 

hybrid approximation algorithm, which outperforms each other 

technique. 
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J.2 [Computer Applications]: Physical Sciences and Engineering 

– Astronomy. 
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Algorithms, Performance, Experimentation. 
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1. INTRODUCTION 
Today more and more massive scientific datasets are becoming 

available, which makes it possible to apply data-driven 

approaches to science. In astrophysics, digital sky surveys such as 

Sloan Digital Sky Survey [1] and Guide Star Catalog II [8], as 

well as cosmological simulations such as BHCosmo [4] and 

Coyote Universe [7], provide datasets with billions of celestial 

objects. This new trend poses challenges for analyzing these 

massive datasets. 

We are addressing this challenge by developing scalable 

algorithms. First, we have developed a distributed algorithm that 

identifies clusters of objects in an astrophysics dataset [5]. In this 

paper, we address another astrophysics problem: building a 

histogram of pairwise distances between celestial objects, the 

correlation function. This histogram helps astronomers analyze 

cosmological models [10]. Since a naive solution takes quadratic 

time, a more efficient solution is necessary for large datasets. 

Researchers have proposed several approaches to computing 

correlation functions. In particular, Gray and Moore used kd-trees 

[6], and Belussi and Faloutsos developed an approximation 

algorithm based on fractal dimensions [2]; however, our 

experiments have shown that the existing techniques are either 

impractically slow or give inaccurate approximations. We propose 

a sampling method and combine it with the kd-tree technique, 

which results in an efficient and accurate approximation of the 

correlation function, applicable to datasets with billions of objects. 

We give a definition of the correlation function in Section 2, 

explain the experimental setup in Section 3, and describe existing 

techniques in Sections 4–6. We then present our sampling 

technique in Section 7, a hybrid technique in Section 8, and its 

distributed version in Section 9. 

2. PROBLEM 
We assume that every astronomical object is a point in three 

dimensions with known coordinates. We are given a set of N 

astronomical objects, denoted p1, p2, …, pN, and a strictly 

increasing series of M + 1 distances, denoted d0, d1, …, dM, 

defining the bins of a histogram. 

For each index i from 1 to M, we need to determine the number of 

object pairs such that the distance between each pair is between 

di–1 and di: 

cf(i) is the number of pairs (pu, pv), where u < v, 

such that di–1 ≤ dist(pu, pv) < di 

where dist(pu, pv) is the Euclidean distance between pu and pv. 

We assume that the given sequence of distances is a geometric 

progression. That is, we are given the distance d0 and a constant 

C > 1, and we need to compute correlation functions for the 

distances d0, C ∙ d0, C
2 ∙ d0, ..., C

M ∙ d0. 

3. EXPERIMENTAL SETUP 
We conduct experiments on a dataset of 4.5 million objects, with 

coordinate values between 0.0 and 40.0 (the unit in this dataset is 
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Mpc/h [4]), which has been provided by our collaborators from 

McWilliams Center for Cosmology at Carnegie Mellon 

University. We compute the correlation functions with the 

following parameters unless indicated otherwise: M = 257, d0 = 

0.001, and C = 1.044.  

We have implemented all the sequential algorithms (Sections 4–8) 

in Java 1.6 and tested them on a 2.66GHz Intel Core 2 Duo 

desktop with 2GB memory. We have conducted the distributed 

computing experiments (Section 9) in a dataintensive computing 

facility in Carnegie Mellon University, called the DiscCloud 

cluster, which consists of 64 compute nodes. Each node has eight 

2.8GHz CPU cores in two quad-core processors, 16 GB of 

memory and four 1 TB SATA disks. The nodes are connected by 

a 10 GigE network.  

4. NAIVE ALGORITHM 
We first consider the straighforward algorithm shown in Figure 1, 

which iterates over all pairs of objects, thus taking O(N2) time. In 

Figure 2, we compare the theoretical estimation and the actual 

running time of the algorithm. 

 

Figure 1. Naive algorithm. 

 

Figure 2. Running time of the naive algorithm, which is 

quadratic on the number of objects. Note that both axes are 

on logarithmic scale. 

There are two approaches to determine in which histogram bin 

each object pair falls: a single logarithm operation (since the 

distance sequence is a geometric progression) and binary search. 

While the theoretical time complexity of the single logarithm 

operation is constant, its computation is slow in practice, and it is 

slower than binary search for a short sequence of distances. In 

Figure 3, we compare the running time of these two approaches. 

The results show that the logarithm computation is more efficient 

only when the length of distance sequence, M, is larger than 75.  

In Figure 4, we show the exactly computed correlation function 

for the dataset of 4.5 million objects used in the experiments. The 

time to compute this function using the naive algorithm is 176 

hours (7.3 days). 

 

Figure 3. Running time of the two approaches in the naive 

algorithm: logarithm operation and binary search. Note that 

the horizontal axis is on logarithmic scale. The use of 

logarithm operation is faster when the length of the distance 

sequence is over 75, that is, M > 75. 

 

Figure 4. The exact correlation function for the set of 4.5 

million objects used in the experiments. Note that both axes 

are on logarithmic scale. 

5. KD-TREE IMPLEMENTATION 
Gary and Moore used kd-tree to accelerate the computation of 

correlation functions [6], which is presented in Figure 5. Unlike 

the naive algorithm, their procedure processes one range of 

distances, di-1 to di, at a time. The kd-tree structure supports tree 

pruning, which speeds up the computation. The time complexity 

of processing a single range of distances is O(N5/3). The overall 

processing time grows as we increase the length M of the distance 

sequence, as shown in Figure 6. 

To improve the efficiency, we have developed a new version of 

the kd-tree algorithm, called multiple-range algorithm, designed 

for processing multiple ranges in one pass. The pseudo-code of 

the multiple-range kd-tree algorithm is shown in Figure 7. We 

have conducted experiments with both the original single-range 

algorithm and the new multiple-range algorithm. The main results 

are as follows. 

a. As shown in Figure 8, the single-range algorithm follows the 

O(N5/3) asymptote. The multiple-range algorithm is in 

practice faster than the single-range kd-tree algorithm, but its 

asymptotic complexity is O(N2). 
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for i = 1 to M do cfi = 0 

for u = 1 to N − 1 do 

    for v = u + 1 to N do 

        find i such that di−1 ≤ dist(pu, pv) < di; cfi ++         

 



 

Figure 5. Single-range kd-tree algorithm. 

 

Figure 6. Dependency of the running time on the length of 

distance sequence for the single-range kd-tree algorithm. We 

have run this experiment with a dataset of 75 thousand objects. 

b. Why is the time complexity of the multiple-range kd-tree 

O(N2)? The reason is that C in our experiments is relatively 

small, specifically, C = 1.044, which means the ranges used 

in constructing the histogram of distances are fine-grained, 

and thus the number of objects in each range is small. For a 

small number of objects, the tree pruning does not lead to the 

reduction of the asymptotic time complexity. 

c. Since the distance sequence is relatively long (M = 257), the 

kd-tree algorithms run slower than the naive algorithm. 

 

Figure 7. Multiple-range kd-tree algorithm. 

d. The processing time of the single-range kd-tree algorithm 

differs significantly for different distances, as shown in 

Figure 9. The results presented in Figure 9 suggest that the 

pruning is most effective for small and very large distances. 

To summarize, we have confirmed that both the single-range and 

the multiple-range kd-tree algorithms have superlinear time 

complexity. Figure 8 further shows that they can be slower than 

the naive algorithm. They are therefore impractically slow for 

massive dataset with billions of objects. The kd-tree technique is 

effective for small and very large distances, but not in-between. 

 

Figure 8. Running time of the single-range kd-tree algorithm,  

multiple-range kd-tree algorithmm, and the naive algorithm 

(Figure 2). The single-range algorithm follows an O(N5/3) 

asymptote. The multiple-range algorithm has quadratic 

complexity but it is faster than the single-tree algorithm in 

practice. 
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for i = 1 to M do cfi = 0 

construct a kd-tree from the root node. Each node in the kd-

tree has a left child and a right child. The bounding box of 

each node is calculated and stored. The number of objects 

(num) in each node is also calculated. 

MULTIPLE-DISTANCES(root, root); 
 

MULTIPLE-DISTANCES(kd-node n1, kd-node n2) 

if (n1 .num < 1 || n2 .num < 1) then return 

if (n1 .num == 1 && n2 .num == 1) then 

    //assume n1 includes object p1 and n2 includes object p2 

    find i such that di−1 ≤ dist(p1, p2) < di; cfi ++         

    return                 
calculate the maximum distance (max) and the minimum 

distance (min) between the bounding boxes of n1 and n2. 

if (min ≥ dM || max < d0) then return 

if ([min, max]   [di–1, di) for an i) then 

    cfi += n1.num ∙ n2.num; 

    return 
if (n1.num > n2.num) then 

    MULTIPLE-DISTANCES(n1.left, n2) 

    MULTIPLE-DISTANCES(n1.right, n2) 

else 

    MULTIPLE-DISTANCES(n1, n2.left) 

    MULTIPLE-DISTANCES(n1, n2.right) 

end procedure 

 

Output: Counters cf1, cf2, …, cfM 
 

for i = 1 to M do cfi = 0 

construct a kd-tree from the root node. Each node in the kd-

tree has a left child and a right child. The bounding box of 

each node is calculated and stored. The number of objects 

(num) in each node is also calculated. 

for i = 1 to M do 

    cfi = SINGLE-DISTANCE(root, root, di–1, di); 
 

SINGLE-DISTANCE(kd-node n1, kd-node n2,  

                             double small, double large) 

if (n1.num < 1 || n2.num < 1) then return 0 

if (n1.num == 1 && n2.num == 1) then  

    //assume n1 includes object p1 and n2 includes object p2 

    if (small ≤ dist(p1, p2) < large) then return 1 

    else return 0 

calculate the maximum distance (max) and the minimum 

distance (min) between the bounding boxes of n1 and n2. 

if (min ≥ large || max < small) then return 0 

if (min ≥ small && max < large) then  

    return n1.num ∙ n2.num 

if (n1.num > n2.num) then 

    return SINGLE-DISTANCE(n1.left, n2, small, large) + 

                SINGLE-DISTANCE(n1.right, n2, small, large) 

else 

    return SINGLE-DISTANCE(n1, n2.left, small, large) +  

                SINGLE-DISTANCE(n1, n2.right, small, large) 

end procedure 

 



 

Figure 9. The dependency of the running time on the distances 

for the single-range kd-tree algorithm. Note that the vertical 

axis is on logarithmic scale. This experiment is conducted on a 

dataset with 450 thousands objects. The results show that the 

processing of small and very large distance is much faster 

than the processing of medium distances. 

6. FRACTAL APPROXIMATION 
The main advantage of the naive and kd-tree algorithms is that 

they provide exact results. On the downside, they are 

impractically slow for massive datasets. The processing of 4.5 

million objects takes several days, and the time grows 

superlinearly with the number of objects, which means that 

processing a set with billions of objects would require very large 

time even on a supercomputer. We now consider the problem of 

developing fast approximate algorithms for computing correlation 

functions. 

Belussi and Faloutsos used an approximate technique for 

computing fractal dimensions of point sets [2], which can be 

readily adapted to computating approximate correlation function 

in two main steps, as shown in Figure 10. First, we divide the 

space into a grid of cubic cells, iterate over all objects, and assign 

each object to the corresponding cell. Second, we count the 

number of objects in each cell.  

 

Figure 10. Fractal algorithm. 

The underlying assumption is that the object density among 

nearby regions is similar, which leads to two approximation steps. 

First, when calculating how many objects are within distance r of 

an object pi, we do not consider a ball centered at pi with radius r, 

but instead use a cube centered at pi with side length r ∙ (4π/3)1/3. 

Since the volume of the ball and the cube are the same, we expect 

that the numbers of objects within them is approximately the 

same. Second, rather than going over each object and counting the 

number of objects in their corresponding cubes, we use a set of 

global cubes (the respective cells) to represent all the cubes 

around objects, which greatly reduce the time complexity.  

If we represent the grid by a hash table, the time complexity of the 

fractal algorithm is linear on the number of objects. We show the 

empirical running time in Figure 11. If we process each of the M 

ranges separately, the overall time complexity is O(M ∙ N). In 

Figure 12, we show the dependency of the running time on the 

number of ranges. We may further reduce the processing time to 

O(N) by sorting the cells in Z-order [9]. 

 

Figure 11. Running time of the fractal approximation, which 

is linear on the number of objects. 

 

Figure 12. Dependency of the running time on the length M of 

the distance sequence. 

While this procedure is very fast, the resulting approximation is 

inaccurate. Belussi and Faloutsos reported that the error of the 

fractal procedure for estimating ∑    
 
    is in the 10–15% range 

[2]. Since the accuracy of the correlation-function histogram 

depends on the accuracy of computing specific values of cfk, the 

resulting error is even greater, specifically around 40%. 

7. SAMPLING 
We next consider the application of sampling to approximate 

computation of correlation functions. Specifically, we randomly 

select S objects from the original set and apply the naive 

algorithm to this smaller sample. To convert the resulting counters 

to the estimates of the counters for the original set, we multiple 

them by (N/S)2 (Figure 13). 

To get a more accurate estimate, we repeat the described 

procedure T times, and then compute the mean µ(cfi) and the 

standard deviation σ(cfi) for each i. According to the central limit 

0.1

1

10

100

1000

10000

0.001 0.01 0.1 1 10 100P
ro

ce
ss

in
g

 t
im

e 
(s

ec
o
n

d
s)

 

Distance 

0

1000

2000

3000

4000

5000

0 1 2 3 4 5

P
ro

ce
ss

in
g

 t
im

e 
(s

ec
o
n

d
s)

 

Number of objects (millions) 

0

1000

2000

3000

4000

5000

0 200 400 600

P
ro

ce
ss

in
g

 t
im

e 
(s

ec
o
n

d
s)

 

Length of distance sequence Output: Counters cf1, cf2, …, cfM 
 

create array si, i = 0 to M 

s0 = 0 

for i = 1 to M do 

    divide the space into a grid of cubic cells with side di 

we use fk to denote the number of objects falling in the kth 

cell 

    si =   (∑ (  )
 

 )  
D = (si – si–1) / (di – di–1) 

    cfi = N (N – 1) (π / 6)D/3 (2di)
D  / 2 

for i = M to 2 do 

cfi = cfi – cfi–1 



theorem, when T is at least 30, these estimates follow the normal 

distribution, which allows determining confidence intervals.  

 

Figure 13. Sampling algorithm. 

In Figure 14, we show the relative error of the sampling algorithm, 

which is the absolute error of the approximation divided by the 

exact value. We have found that even a small sample provides a 

relatively accurate approximation for many distances. For 

example, if S = 10,000, the sampling algorithm produces estimates 

with less than 1% error for distances from 2 to 50.  

On the downside, the sampling error is much higher for small and 

very large distances. Generally, the error of estimating cfi 

(Figure 14) is in inverse proportion to the value of cfi. 

The overall running time of the sampling algorithm is the sum of 

(1) the time to retrieve samples from the original dataset and (2) 

the time to conduct the subsequent computation on the samples. 

We use a straightforward method to select samples from the 

original dataset, which makes a liner pass through the whole 

dataset, thus taking O(N) time. For the dataset of 4.5 million 

objects, this sample selection takes 2.3 seconds. The time of 

applying the naive correlation function algorithm to the selected 

samples is O(T ∙ S2).  

 

Figure 14. The relative error of the sampling technique. The 

four lines represent experiments with samples of size 1,000, 

10,000, 50,000 and 100,000.  

 

8. HYBRID TECHNIQUE 
We have shown that the sampling method is fast but inaccurate 

for small and very large distances (Figure 14). On the other hand, 

the kd-tree technique is fast for small and very large distances 

(Figure 9). We can thus obtain better results by combining these 

two techniques. Specifically, we apply the kd-tree algorithm to 

small and very large distances, and the sampling technique to the 

distances in the middle. 

 

Figure 15. Illustration of the hybrid technique. 

 

Figure 16. Hybrid algorithm. 

The related parameter tuning involves setting the “turning points” 

Dmin and Dmax, and determing the appropriate sample size S. We 

have selected these parameters based on empirical results, with 

the purpose of achieving the given accuracy in minimal running 

time.  

In Figure 17, we compare the running time of the hybrid 

algorithm given different allowed approximation errors (epsilon). 

In Figure 18, we compare the running time of the hybrid 

algorithm to other techniques on the set of 4.5 million objects. 

The proposed hybrid algorithm is much faster than the exact 

computation even if we limit the approximation error to 0.2%. 

When the running time of the hybrid algorithm is the same as that 

of the fractal algorithm, its error is much smaller. 

 

Figure 17. Running time of the hybrid algorithm with 

different allowed errors. The five data points correspond to 

the errors of 0.2%, 0.5%, 1%, 2% and 5%. 
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Input: Required maximum relative error epsilon 

Output: Mean and standard deviation of cf1, cf2, …, cfM 
 

 Find turning points Dmin and Dmax according to epsilon. 

 For distances inside [Dmin, Dmax), select the number of sampled 

objects S according to epsilon, and use the sampling algorithm 

in Section 7. 

 For distances inside [d0, Dmin) and [Dmax, dM), use the kd-tree 

algorithm described in Section 5. 

Dmax Dmin 0 

kd-tree kd-tree sampling 

Output: Mean and standard deviation of cf1, cf2, …, cfM 
 

T = 30 // T is the number of sampling iteration 

create two dimensional array auv, u = 1 to M, v = 1 to T 

for u = 1 to M do 

    for v = 1 to T do 

        auv = 0 

for t = 1 to T do 

    randomly select S objects r1, r2, …, rS from p1, p2, …, pN 

    for u = 1 to S – 1 do 

        for v = u + 1 to S do 

                find i such that di−1 ≤ dist(ru, rv) < di; ait ++          

    for i = 1 to M do ait = ait ∙ (N/S)2 

for i = 1 to M do 

    µ(cfi) = (ai1 + ai2 +…+ aiT) / T 

σ(cfi)
2 = ((ai1 – µ(cfi))

2 + (ai2 – µ(cfi))
2 +…+ (aiT – µ(cfi))

2)  

 / (T (T – 1)) 



 

Figure 18. Running time of the described techniques on the 4.5 

million objects dataset.  

9. DISTRIBUTED HYBRID ALGORITHM 
We have used Hadoop (http://hadoop.apache.org) to distribute the 

computation, which reduces the running time through parallel 

processing of samples. 

To implement distributed processing, we have made one 

adjustment to the hybrid algorithm. Specifically, we no longer 

apply kd-tree algorithm to the set of all objects. Instead, we apply 

it to several samples from the overall dataset, and then compute 

the mean and standard deviation. The samples used in the kd-tree 

computation are larger than the samples used in the naive 

computation, which ensures sufficient accuracy for small and very 

large distances. 

The Map-Reduce framework [3] readily supports the sampling 

operation. During the Map phase, we select random samples. 

During the Reduce phase, we process the selected samples in 

parallel.  

In Table 1, we show the processing time with 32 cores, for the 

maximal allowed error of 1%. We have used two larger datasets: 

the Coyote Universe set [7], which contains 1.1 billion objects, 

and the DMKraken set, provided by our collaborators at the 

McWilliams Center for Cosmology at Carnegie Mellon, which 

contains 5 billion objects. 

Table 1. Time of computing correlation functions on a 

compute cluster with 32 cores, for the allowed error of 1%. 

We set d0 = 0.006, dM = 65, C = 1.044, and M = 216 in this 

experiment. 

Number of objects in the overall 

dataset (before sampling) 

Running time 

(Seconds) 

4.5 million 888 

1.1 billion 1529 

5 billion 2436 

 

In Figure 19, we show the dependency of the speedup on the 

number of CPU cores.  

10. CONCLUSIONS 
We have presented a hybrid approximate algorithm for building 

the histogram of pairwise distances between celestial objects, 

which allows fast accurate approximation for dataset with billions 

 

Figure 19. Scalability of the distributed hybrid algorithm on 

the dataset with 1.1 billion objects. We set d0 = 0.006, dM = 65, 

C = 1.044, M = 216, and allow the error of 1%. The dashed 

line represents the ideal case where the speedup equals the 

number of cores used in the computation. 

of objects. Our implementations are available at 

http://www.pdl.cmu.edu/AstroDISC/disc-dist-code.shtml. 

The related future work may involve improving the parameter 

tuning process. We will also explore other distributed 

computation frameworks, which may be more suitable for the 

hybrid algorithm.   
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