
Exact and Approximate Computation of a Histogram of Pairwise

Distances between Astronomical Objects

Bin Fu, Eugene Fink, Garth Gibson and Jaime Carbonell

Computer Science, Carnegie Mellon University

Pittsburgh, Pennsylvania 15213, United States

{binf, e.fink, garth, jgc}@cs.cmu.edu

ABSTRACT

We compare several alternative approaches to computing

correlation functions, which is a cosmological application for

analyzing the distribution of matter in the universe. This

computation involves counting the pairs of galaxies within a given

distance from each other and building a histogram that shows the

dependency of the number of pairs on the distance.

The straightforward algorithm for counting the exact number of

pairs has the O(n2) time complexity, which is unacceptably slow

for most astronomical and cosmological datasets, which include

billions of objects. We analyze the performance of several

alternative algorithms, including the exact computation with an

O(n5/3) average running time, an approximate computation with

linear running time, and another approximate algorithm with sub-

linear running time, based on sampling the given dataset and

computing the correlation functions for the samples. We compare

the accuracy of the described algorithms and analyze the tradeoff

between their accuracy and running time. We also propose a novel

hybrid approximation algorithm, which outperforms each other

technique.

Categories and Subject Descriptors
J.2 [Computer Applications]: Physical Sciences and Engineering

– Astronomy.

General Terms

Algorithms, Performance, Experimentation.

Keywords

Approximation, astrophysics, large-scale data, eScience, kd-tree,

sampling, Hadoop.

1. INTRODUCTION
Today more and more massive scientific datasets are becoming

available, which makes it possible to apply data-driven

approaches to science. In astrophysics, digital sky surveys such as

Sloan Digital Sky Survey [1] and Guide Star Catalog II [8], as

well as cosmological simulations such as BHCosmo [4] and

Coyote Universe [7], provide datasets with billions of celestial

objects. This new trend poses challenges for analyzing these

massive datasets.

We are addressing this challenge by developing scalable

algorithms. First, we have developed a distributed algorithm that

identifies clusters of objects in an astrophysics dataset [5]. In this

paper, we address another astrophysics problem: building a

histogram of pairwise distances between celestial objects, the

correlation function. This histogram helps astronomers analyze

cosmological models [10]. Since a naive solution takes quadratic

time, a more efficient solution is necessary for large datasets.

Researchers have proposed several approaches to computing

correlation functions. In particular, Gray and Moore used kd-trees

[6], and Belussi and Faloutsos developed an approximation

algorithm based on fractal dimensions [2]; however, our

experiments have shown that the existing techniques are either

impractically slow or give inaccurate approximations. We propose

a sampling method and combine it with the kd-tree technique,

which results in an efficient and accurate approximation of the

correlation function, applicable to datasets with billions of objects.

We give a definition of the correlation function in Section 2,

explain the experimental setup in Section 3, and describe existing

techniques in Sections 4–6. We then present our sampling

technique in Section 7, a hybrid technique in Section 8, and its

distributed version in Section 9.

2. PROBLEM
We assume that every astronomical object is a point in three

dimensions with known coordinates. We are given a set of N

astronomical objects, denoted p1, p2, …, pN, and a strictly

increasing series of M + 1 distances, denoted d0, d1, …, dM,

defining the bins of a histogram.

For each index i from 1 to M, we need to determine the number of

object pairs such that the distance between each pair is between

di–1 and di:

cf(i) is the number of pairs (pu, pv), where u < v,

such that di–1 ≤ dist(pu, pv) < di

where dist(pu, pv) is the Euclidean distance between pu and pv.

We assume that the given sequence of distances is a geometric

progression. That is, we are given the distance d0 and a constant

C > 1, and we need to compute correlation functions for the

distances d0, C ∙ d0, C
2 ∙ d0, ..., C

M ∙ d0.

3. EXPERIMENTAL SETUP
We conduct experiments on a dataset of 4.5 million objects, with

coordinate values between 0.0 and 40.0 (the unit in this dataset is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

AstroHPC'12, June 19, 2012, Delft, The Netherlands.
Copyright 2012 ACM 978-1-4503-1338-4/12/06…$10.00.

Mpc/h [4]), which has been provided by our collaborators from

McWilliams Center for Cosmology at Carnegie Mellon

University. We compute the correlation functions with the

following parameters unless indicated otherwise: M = 257, d0 =

0.001, and C = 1.044.

We have implemented all the sequential algorithms (Sections 4–8)

in Java 1.6 and tested them on a 2.66GHz Intel Core 2 Duo

desktop with 2GB memory. We have conducted the distributed

computing experiments (Section 9) in a dataintensive computing

facility in Carnegie Mellon University, called the DiscCloud

cluster, which consists of 64 compute nodes. Each node has eight

2.8GHz CPU cores in two quad-core processors, 16 GB of

memory and four 1 TB SATA disks. The nodes are connected by

a 10 GigE network.

4. NAIVE ALGORITHM
We first consider the straighforward algorithm shown in Figure 1,

which iterates over all pairs of objects, thus taking O(N2) time. In

Figure 2, we compare the theoretical estimation and the actual

running time of the algorithm.

Figure 1. Naive algorithm.

Figure 2. Running time of the naive algorithm, which is

quadratic on the number of objects. Note that both axes are

on logarithmic scale.

There are two approaches to determine in which histogram bin

each object pair falls: a single logarithm operation (since the

distance sequence is a geometric progression) and binary search.

While the theoretical time complexity of the single logarithm

operation is constant, its computation is slow in practice, and it is

slower than binary search for a short sequence of distances. In

Figure 3, we compare the running time of these two approaches.

The results show that the logarithm computation is more efficient

only when the length of distance sequence, M, is larger than 75.

In Figure 4, we show the exactly computed correlation function

for the dataset of 4.5 million objects used in the experiments. The

time to compute this function using the naive algorithm is 176

hours (7.3 days).

Figure 3. Running time of the two approaches in the naive

algorithm: logarithm operation and binary search. Note that

the horizontal axis is on logarithmic scale. The use of

logarithm operation is faster when the length of the distance

sequence is over 75, that is, M > 75.

Figure 4. The exact correlation function for the set of 4.5

million objects used in the experiments. Note that both axes

are on logarithmic scale.

5. KD-TREE IMPLEMENTATION
Gary and Moore used kd-tree to accelerate the computation of

correlation functions [6], which is presented in Figure 5. Unlike

the naive algorithm, their procedure processes one range of

distances, di-1 to di, at a time. The kd-tree structure supports tree

pruning, which speeds up the computation. The time complexity

of processing a single range of distances is O(N5/3). The overall

processing time grows as we increase the length M of the distance

sequence, as shown in Figure 6.

To improve the efficiency, we have developed a new version of

the kd-tree algorithm, called multiple-range algorithm, designed

for processing multiple ranges in one pass. The pseudo-code of

the multiple-range kd-tree algorithm is shown in Figure 7. We

have conducted experiments with both the original single-range

algorithm and the new multiple-range algorithm. The main results

are as follows.

a. As shown in Figure 8, the single-range algorithm follows the

O(N5/3) asymptote. The multiple-range algorithm is in

practice faster than the single-range kd-tree algorithm, but its

asymptotic complexity is O(N2).

0.001

0.01

0.1

1

10

100

1000

10000

100000

550 2200 8800 35200 140800 563200

P
ro

ce
ss

in
g

 t
im

e
(s

ec
o
n

d
s)

Number of objects

Actual processing time

Quadratic asymptote

0

20

40

60

80

100

120

5 20 80 320

P
ro

ce
ss

in
g

 T
im

e
(S

ec
o
n

d
s)

Length of distance sequence

Log Operation

Binary Search

1.00E+00

1.00E+02

1.00E+04

1.00E+06

1.00E+08

1.00E+10

1.00E+12

0.001 0.01 0.1 1 10 100

N
u

m
b

er
 o

f
p

a
ir

s

Distance

Output: Counters cf1, cf2, …, cfM

for i = 1 to M do cfi = 0

for u = 1 to N − 1 do

 for v = u + 1 to N do

 find i such that di−1 ≤ dist(pu, pv) < di; cfi ++

Figure 5. Single-range kd-tree algorithm.

Figure 6. Dependency of the running time on the length of

distance sequence for the single-range kd-tree algorithm. We

have run this experiment with a dataset of 75 thousand objects.

b. Why is the time complexity of the multiple-range kd-tree

O(N2)? The reason is that C in our experiments is relatively

small, specifically, C = 1.044, which means the ranges used

in constructing the histogram of distances are fine-grained,

and thus the number of objects in each range is small. For a

small number of objects, the tree pruning does not lead to the

reduction of the asymptotic time complexity.

c. Since the distance sequence is relatively long (M = 257), the

kd-tree algorithms run slower than the naive algorithm.

Figure 7. Multiple-range kd-tree algorithm.

d. The processing time of the single-range kd-tree algorithm

differs significantly for different distances, as shown in

Figure 9. The results presented in Figure 9 suggest that the

pruning is most effective for small and very large distances.

To summarize, we have confirmed that both the single-range and

the multiple-range kd-tree algorithms have superlinear time

complexity. Figure 8 further shows that they can be slower than

the naive algorithm. They are therefore impractically slow for

massive dataset with billions of objects. The kd-tree technique is

effective for small and very large distances, but not in-between.

Figure 8. Running time of the single-range kd-tree algorithm,

multiple-range kd-tree algorithmm, and the naive algorithm

(Figure 2). The single-range algorithm follows an O(N5/3)

asymptote. The multiple-range algorithm has quadratic

complexity but it is faster than the single-tree algorithm in

practice.

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500

P
ro

ce
ss

in
g

 T
im

e
(S

ec
o
n

d
s)

Length of distance sequence

0.001

0.01

0.1

1

10

100

1000

10000

550 2200 8800 35200 140800

P
ro

ce
ss

in
g

 t
im

e
(s

ec
o
n

d
s)

Number of objects

Single tree

Single tree asymptote

Multiple tree

Naïve

Output: Counters cf1, cf2, …, cfM

for i = 1 to M do cfi = 0

construct a kd-tree from the root node. Each node in the kd-

tree has a left child and a right child. The bounding box of

each node is calculated and stored. The number of objects

(num) in each node is also calculated.

MULTIPLE-DISTANCES(root, root);

MULTIPLE-DISTANCES(kd-node n1, kd-node n2)

if (n1 .num < 1 || n2 .num < 1) then return

if (n1 .num == 1 && n2 .num == 1) then

 //assume n1 includes object p1 and n2 includes object p2

 find i such that di−1 ≤ dist(p1, p2) < di; cfi ++

 return
calculate the maximum distance (max) and the minimum

distance (min) between the bounding boxes of n1 and n2.

if (min ≥ dM || max < d0) then return

if ([min, max] [di–1, di) for an i) then

 cfi += n1.num ∙ n2.num;

 return
if (n1.num > n2.num) then

 MULTIPLE-DISTANCES(n1.left, n2)

 MULTIPLE-DISTANCES(n1.right, n2)

else

 MULTIPLE-DISTANCES(n1, n2.left)

 MULTIPLE-DISTANCES(n1, n2.right)

end procedure

Output: Counters cf1, cf2, …, cfM

for i = 1 to M do cfi = 0

construct a kd-tree from the root node. Each node in the kd-

tree has a left child and a right child. The bounding box of

each node is calculated and stored. The number of objects

(num) in each node is also calculated.

for i = 1 to M do

 cfi = SINGLE-DISTANCE(root, root, di–1, di);

SINGLE-DISTANCE(kd-node n1, kd-node n2,

 double small, double large)

if (n1.num < 1 || n2.num < 1) then return 0

if (n1.num == 1 && n2.num == 1) then

 //assume n1 includes object p1 and n2 includes object p2

 if (small ≤ dist(p1, p2) < large) then return 1

 else return 0

calculate the maximum distance (max) and the minimum

distance (min) between the bounding boxes of n1 and n2.

if (min ≥ large || max < small) then return 0

if (min ≥ small && max < large) then

 return n1.num ∙ n2.num

if (n1.num > n2.num) then

 return SINGLE-DISTANCE(n1.left, n2, small, large) +

 SINGLE-DISTANCE(n1.right, n2, small, large)

else

 return SINGLE-DISTANCE(n1, n2.left, small, large) +

 SINGLE-DISTANCE(n1, n2.right, small, large)

end procedure

Figure 9. The dependency of the running time on the distances

for the single-range kd-tree algorithm. Note that the vertical

axis is on logarithmic scale. This experiment is conducted on a

dataset with 450 thousands objects. The results show that the

processing of small and very large distance is much faster

than the processing of medium distances.

6. FRACTAL APPROXIMATION
The main advantage of the naive and kd-tree algorithms is that

they provide exact results. On the downside, they are

impractically slow for massive datasets. The processing of 4.5

million objects takes several days, and the time grows

superlinearly with the number of objects, which means that

processing a set with billions of objects would require very large

time even on a supercomputer. We now consider the problem of

developing fast approximate algorithms for computing correlation

functions.

Belussi and Faloutsos used an approximate technique for

computing fractal dimensions of point sets [2], which can be

readily adapted to computating approximate correlation function

in two main steps, as shown in Figure 10. First, we divide the

space into a grid of cubic cells, iterate over all objects, and assign

each object to the corresponding cell. Second, we count the

number of objects in each cell.

Figure 10. Fractal algorithm.

The underlying assumption is that the object density among

nearby regions is similar, which leads to two approximation steps.

First, when calculating how many objects are within distance r of

an object pi, we do not consider a ball centered at pi with radius r,

but instead use a cube centered at pi with side length r ∙ (4π/3)1/3.

Since the volume of the ball and the cube are the same, we expect

that the numbers of objects within them is approximately the

same. Second, rather than going over each object and counting the

number of objects in their corresponding cubes, we use a set of

global cubes (the respective cells) to represent all the cubes

around objects, which greatly reduce the time complexity.

If we represent the grid by a hash table, the time complexity of the

fractal algorithm is linear on the number of objects. We show the

empirical running time in Figure 11. If we process each of the M

ranges separately, the overall time complexity is O(M ∙ N). In

Figure 12, we show the dependency of the running time on the

number of ranges. We may further reduce the processing time to

O(N) by sorting the cells in Z-order [9].

Figure 11. Running time of the fractal approximation, which

is linear on the number of objects.

Figure 12. Dependency of the running time on the length M of

the distance sequence.

While this procedure is very fast, the resulting approximation is

inaccurate. Belussi and Faloutsos reported that the error of the

fractal procedure for estimating ∑

 is in the 10–15% range

[2]. Since the accuracy of the correlation-function histogram

depends on the accuracy of computing specific values of cfk, the

resulting error is even greater, specifically around 40%.

7. SAMPLING
We next consider the application of sampling to approximate

computation of correlation functions. Specifically, we randomly

select S objects from the original set and apply the naive

algorithm to this smaller sample. To convert the resulting counters

to the estimates of the counters for the original set, we multiple

them by (N/S)2 (Figure 13).

To get a more accurate estimate, we repeat the described

procedure T times, and then compute the mean µ(cfi) and the

standard deviation σ(cfi) for each i. According to the central limit

0.1

1

10

100

1000

10000

0.001 0.01 0.1 1 10 100P
ro

ce
ss

in
g

 t
im

e
(s

ec
o
n

d
s)

Distance

0

1000

2000

3000

4000

5000

0 1 2 3 4 5

P
ro

ce
ss

in
g

 t
im

e
(s

ec
o
n

d
s)

Number of objects (millions)

0

1000

2000

3000

4000

5000

0 200 400 600

P
ro

ce
ss

in
g

 t
im

e
(s

ec
o
n

d
s)

Length of distance sequence Output: Counters cf1, cf2, …, cfM

create array si, i = 0 to M

s0 = 0

for i = 1 to M do

 divide the space into a grid of cubic cells with side di

we use fk to denote the number of objects falling in the kth

cell

 si = (∑ ()

)
D = (si – si–1) / (di – di–1)

 cfi = N (N – 1) (π / 6)D/3 (2di)
D / 2

for i = M to 2 do

cfi = cfi – cfi–1

theorem, when T is at least 30, these estimates follow the normal

distribution, which allows determining confidence intervals.

Figure 13. Sampling algorithm.

In Figure 14, we show the relative error of the sampling algorithm,

which is the absolute error of the approximation divided by the

exact value. We have found that even a small sample provides a

relatively accurate approximation for many distances. For

example, if S = 10,000, the sampling algorithm produces estimates

with less than 1% error for distances from 2 to 50.

On the downside, the sampling error is much higher for small and

very large distances. Generally, the error of estimating cfi

(Figure 14) is in inverse proportion to the value of cfi.

The overall running time of the sampling algorithm is the sum of

(1) the time to retrieve samples from the original dataset and (2)

the time to conduct the subsequent computation on the samples.

We use a straightforward method to select samples from the

original dataset, which makes a liner pass through the whole

dataset, thus taking O(N) time. For the dataset of 4.5 million

objects, this sample selection takes 2.3 seconds. The time of

applying the naive correlation function algorithm to the selected

samples is O(T ∙ S2).

Figure 14. The relative error of the sampling technique. The

four lines represent experiments with samples of size 1,000,

10,000, 50,000 and 100,000.

8. HYBRID TECHNIQUE
We have shown that the sampling method is fast but inaccurate

for small and very large distances (Figure 14). On the other hand,

the kd-tree technique is fast for small and very large distances

(Figure 9). We can thus obtain better results by combining these

two techniques. Specifically, we apply the kd-tree algorithm to

small and very large distances, and the sampling technique to the

distances in the middle.

Figure 15. Illustration of the hybrid technique.

Figure 16. Hybrid algorithm.

The related parameter tuning involves setting the “turning points”

Dmin and Dmax, and determing the appropriate sample size S. We

have selected these parameters based on empirical results, with

the purpose of achieving the given accuracy in minimal running

time.

In Figure 17, we compare the running time of the hybrid

algorithm given different allowed approximation errors (epsilon).

In Figure 18, we compare the running time of the hybrid

algorithm to other techniques on the set of 4.5 million objects.

The proposed hybrid algorithm is much faster than the exact

computation even if we limit the approximation error to 0.2%.

When the running time of the hybrid algorithm is the same as that

of the fractal algorithm, its error is much smaller.

Figure 17. Running time of the hybrid algorithm with

different allowed errors. The five data points correspond to

the errors of 0.2%, 0.5%, 1%, 2% and 5%.

0.0001

0.001

0.01

0.1

1

10

0.01 0.1 1 10 100

R
el

a
ti

v
e

sa
m

p
li

n
g

 e
rr

o
r

Distance

S = 1k

S = 10k

S = 50k

S = 100k

0

10000

20000

30000

40000

0 0.01 0.02 0.03 0.04 0.05P
ro

ce
ss

in
g

 t
im

e
(s

ec
o
n

d
s)

Relative error

Input: Required maximum relative error epsilon

Output: Mean and standard deviation of cf1, cf2, …, cfM

 Find turning points Dmin and Dmax according to epsilon.

 For distances inside [Dmin, Dmax), select the number of sampled

objects S according to epsilon, and use the sampling algorithm

in Section 7.

 For distances inside [d0, Dmin) and [Dmax, dM), use the kd-tree

algorithm described in Section 5.

Dmax Dmin 0

kd-tree kd-tree sampling

Output: Mean and standard deviation of cf1, cf2, …, cfM

T = 30 // T is the number of sampling iteration

create two dimensional array auv, u = 1 to M, v = 1 to T

for u = 1 to M do

 for v = 1 to T do

 auv = 0

for t = 1 to T do

 randomly select S objects r1, r2, …, rS from p1, p2, …, pN

 for u = 1 to S – 1 do

 for v = u + 1 to S do

 find i such that di−1 ≤ dist(ru, rv) < di; ait ++

 for i = 1 to M do ait = ait ∙ (N/S)2

for i = 1 to M do

 µ(cfi) = (ai1 + ai2 +…+ aiT) / T

σ(cfi)
2 = ((ai1 – µ(cfi))

2 + (ai2 – µ(cfi))
2 +…+ (aiT – µ(cfi))

2)

 / (T (T – 1))

Figure 18. Running time of the described techniques on the 4.5

million objects dataset.

9. DISTRIBUTED HYBRID ALGORITHM
We have used Hadoop (http://hadoop.apache.org) to distribute the

computation, which reduces the running time through parallel

processing of samples.

To implement distributed processing, we have made one

adjustment to the hybrid algorithm. Specifically, we no longer

apply kd-tree algorithm to the set of all objects. Instead, we apply

it to several samples from the overall dataset, and then compute

the mean and standard deviation. The samples used in the kd-tree

computation are larger than the samples used in the naive

computation, which ensures sufficient accuracy for small and very

large distances.

The Map-Reduce framework [3] readily supports the sampling

operation. During the Map phase, we select random samples.

During the Reduce phase, we process the selected samples in

parallel.

In Table 1, we show the processing time with 32 cores, for the

maximal allowed error of 1%. We have used two larger datasets:

the Coyote Universe set [7], which contains 1.1 billion objects,

and the DMKraken set, provided by our collaborators at the

McWilliams Center for Cosmology at Carnegie Mellon, which

contains 5 billion objects.

Table 1. Time of computing correlation functions on a

compute cluster with 32 cores, for the allowed error of 1%.

We set d0 = 0.006, dM = 65, C = 1.044, and M = 216 in this

experiment.

Number of objects in the overall

dataset (before sampling)

Running time

(Seconds)

4.5 million 888

1.1 billion 1529

5 billion 2436

In Figure 19, we show the dependency of the speedup on the

number of CPU cores.

10. CONCLUSIONS
We have presented a hybrid approximate algorithm for building

the histogram of pairwise distances between celestial objects,

which allows fast accurate approximation for dataset with billions

Figure 19. Scalability of the distributed hybrid algorithm on

the dataset with 1.1 billion objects. We set d0 = 0.006, dM = 65,

C = 1.044, M = 216, and allow the error of 1%. The dashed

line represents the ideal case where the speedup equals the

number of cores used in the computation.

of objects. Our implementations are available at

http://www.pdl.cmu.edu/AstroDISC/disc-dist-code.shtml.

The related future work may involve improving the parameter

tuning process. We will also explore other distributed

computation frameworks, which may be more suitable for the

hybrid algorithm.

11. ACKNOWLEDGMENTS
We thank Rupert Croft and Tiziana Di Matteo for helping us

understand the related cosmological problem and providing

feedback on our results. We also thank Julio Lopez, Christos

Faloutsos, and Helen Mukomel for their comments and insights.

This work was sponsored in part by grants from Google, the

Moore Foundation, National Science Foundation Open Cloud

Consortium, the Petascale Data Storage Institute (PDSI), the

McWilliams Center for Cosmology and the companies of the

Parallel Data Laboratory Consortium (PDL).

12. REFERENCES
[1] Kevork N. Abazajian et al. The seventh data release of the

Sloan Digital Sky Survey. Astrophysical Journal Supplement

Series, 182(2), pages 543–558, 2009.

[2] Alberto Belussi and Christos Faloutsos. Estimating the

selectivity of spatial queries using the „correlation‟ fractal

dimension. In Proceedings of the Twenty-First International

Conference on Very Large Data Bases, pages 299–310,

1995.

[3] Jeff Dean and Sanjay Ghemawat. MapReduce: Simplified

data processing on large clusters. In Proceedings of the

Symposium on Operating System Design and

Implementation, 2004.

[4] Tiziana Di Matteo, Jörg Colberg, Volker Springel, Lars

Hernquist, and Debora Sijacki. Direct cosmological

simulations of the growth of black holes and galaxies.

Astrophysical Journal, 676(2), 2008.

[5] Bin Fu, Kai Ren, Julio Lopez, Eugene Fink, and Garth

Gibson. DiscFinder: A data-intensive scalable cluster finder

for astrophysics. In Proceedings of the Twentieth ACM

International Symposium on High Performance Distributed

Computing, 2010.

1,832,710
633,600

39,729

4,605 4,680

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

kd-Tree Naïve Hybrid

(error<0.2%)

Hybrid

(error<1%)

Fractal (error

~40%)

P
r
o

c
e
ss

in
g

 t
im

e
 (

se
c
o

n
d

s)

0

5

10

15

20

25

30

35

0 8 16 24 32

S
p

ee
d

u
p

Number of Cores

http://hadoop.apache.org/
http://www.pdl.cmu.edu/AstroDISC/disc-dist-code.shtml

[6] Alexander Gray and Andrew Moore. “N-body” problems in

statistical learning. Advances in Neural Information

Processing Systems 13, pages 521–527. MIT Press, 2000.

[7] Katrin Heitmann, Martin White, Christian Wagner, Salman

Habib, and David Higdon. The Coyote Universe I: Precision

determination of the nonlinear matter power spectrum.

Astrophysical Journal, 715(1), 2008.

[8] Barry Lasker et al. The second-generation Guide Star

Catalog: Description and properties. The Astrophysical

Journal, 136, pages 735, 2008.

[9] G. M. Morton. A Computer Oriented Geodetic Data Base

and a New Technique in File Sequencing. IBM Germany

Scientific Symposium Series, 1966.

[10] Jim Peebles. The Large Scale Structure of the Universe.

Princeton University Press, 1980.

